2(2x^2+18)-26=2x^2+18

Simple and best practice solution for 2(2x^2+18)-26=2x^2+18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(2x^2+18)-26=2x^2+18 equation:



2(2x^2+18)-26=2x^2+18
We move all terms to the left:
2(2x^2+18)-26-(2x^2+18)=0
We multiply parentheses
4x^2-(2x^2+18)+36-26=0
We get rid of parentheses
4x^2-2x^2-18+36-26=0
We add all the numbers together, and all the variables
2x^2-8=0
a = 2; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·2·(-8)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*2}=\frac{-8}{4} =-2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*2}=\frac{8}{4} =2 $

See similar equations:

| 2e+9=5e-3 | | 4(x+8)=64 | | 3/5x-2x-1/3=1 | | −3+9b=96 | | 1/3y=33/4 | | 33−t​=−1 | | 6c+2=3c+8 | | 102x-4=22 | | (3^x)(4^(2x+1))=6^(x+2) | | 10(x+4)-9(x-3=8(x+3) | | -6+x=-14-5x | | x-63=24 | | x/(-2)=12 | | 8n×2-33=1 | | 6m+18+5m-35=11m-17 | | 36=2(2x+4)-8 | | 6m+18+5m-35=11m-3 | | -35=5(4x+1) | | 9/x-1=-3/x+3 | | 6m+18+5m-35=11m | | 3s-3=-12 | | −12-4n=20 | | 24–5x=9 | | −12−4n=20 | | 6x-4=2(2x+-5) | | 4x(2x+3)=6x+2 | | 2a+8=40 | | 160-x-x=126 | | −3+6(z+2)=6(−5z−1)−2 | | x+2/3x+2=1 | | -d/4=5/2 | | 3x=90-3x |

Equations solver categories